Characteristics and Proximity Analysis of Urban Innovation Network Based on Marine Industry

GUO Jianke, TIAN Dongcui

Areal Research and Development ›› 2024, Vol. 43 ›› Issue (1) : 46-52.

PDF(1589 KB)
PDF(1589 KB)
Areal Research and Development ›› 2024, Vol. 43 ›› Issue (1) : 46-52. DOI: 10.3969/j.issn.10032363.2024.01.007

Characteristics and Proximity Analysis of Urban Innovation Network Based on Marine Industry

  • GUO Jiankea,b, TIAN Dongcuia,b
Author information +
History +

Abstract

Based on the patent application data of marine industry cooperation from 2000 to 2020,this paper analyzes the topological structure,spatial pattern and proximity mechanism of China’s urban innovation network by using social network analysis and geodetector.The results show that: ① In terms of topological structure, urban innovation network does not have scale-free network characteristics in 2000 and 2001; from 2002 to 2020,the scale of the network gradually expanded,and inter-city cooperation increased.The network changed from loose to agglomeration with 2011 as the dividing point.The scale-free characteristics and small world of the network are gradually obvious, and the dual-core structure is gradually developed into the “ core-edge ” structure with Beijing as the single core.② In terms of spatial pattern,core cities and intermediary cities show regional characteristics,mainly concentrated in Beijing and Tianjin,Yangtze River Delta, Pearl River Delta and Shandong Peninsula.Urban innovation network forms a quadrilateral spatial pattern supported by triangular structure.③ Urban patent cooperation expands from coastal cities to inland cities,but the scientific and technological innovation of marine industry mainly relies on coastal cities such as Shenzhen,Qingdao,Shanghai,Tianjin,Guangzhou and a small number of inland cities such as Beijing and Wuhan.④ Social proximity has the highest explanatory power for urban innovation network,and the limitation of geographical distance on urban cooperation is gradually weakened.There is a nonlinear enhanced pairwise interaction between different proximity factors.

Key words

marine industry / cooperative patent / social network analysis / geodetector / multidimensional proximity / city innovation network

Cite this article

Download Citations
GUO Jianke, TIAN Dongcui. Characteristics and Proximity Analysis of Urban Innovation Network Based on Marine Industry[J]. Areal Research and Development, 2024, 43(1): 46-52 https://doi.org/10.3969/j.issn.10032363.2024.01.007

References

[1] 秦娅风,郭建科,董梦如,等.基于企业投资行为的中国沿海城市产业网络空间联系特征[J].地域研究与开发,2021,40(6):19-24.
[2] 王录仓,刘海洋,刘清.基于腾讯迁徙大数据的中国城市网络研究[J].地理学报,2021,76(4):853-869.
[3] 王姣娥,景悦.中国城市网络等级结构特征及组织模式:基于铁路和航空流的比较[J].地理学报,2017,72(8):1508-1519.
[4] 马妍,薛峰,孙威,等.海峡西岸经济区城市网络特征分析:基于功能网络与创新网络的视角[J].地理研究,2019,38(12):3010-3024.
[5] 宗会明,吕瑞辉.基于物流企业数据的2007—2017年中国城市网络空间特征及演化[J].地理科学,2020,40(5):760-767.
[6] 桂钦昌,杜德斌,刘承良,等.全球城市知识流动网络的结构特征与影响因素[J].地理研究,2021,40(5):1320-1337.
[7] 周灿,曾刚,曹贤忠.中国城市创新网络结构与创新能力研究[J].地理研究,2017,36(7):1297-1308.
[8] 周宏浩,谷国锋.外部性视角下中国城市网络演化及其环境效应研究[J].地理研究,2022,41(1):268-285.
[9] 李丹丹,汪涛,魏也华,等.中国城市尺度科学知识网络与技术知识网络结构的时空复杂性[J].地理研究,2015,34(3):525-540.
[10] 庄德林,杨羊,晋盛武,等.基于战略性新兴产业的长江三角洲城市网络结构演变研究[J].地理科学,2017,37(4):546-553.
[11] 唐承辉,张衔春.全球城市区域合作网络结构演变:以粤港澳大湾区为例[J].经济地理,2022,42(2):25-34.
[12] 焦美琪,杜德斌,桂钦昌,等.全球城市技术合作网络的拓扑结构特征与空间格局[J].地理科学,2019,39(10):1546-1552.
[13] 武前波,宁越敏.中国城市空间网络分析:基于电子信息企业生产网络视角[J].地理研究,2012,31(2):207-219.
[14] 叶雅玲,杨博飞,何紫云,等.中国城市网络空间结构研究:基于A股上市医药公司网络[J].地理科学进展,2018,37(8):1096-1105.
[15] 朱艳硕,王铮,程文露.中国装备制造业的空间枢纽:网络结构[J].地理学报,2019,74(8):1525-1533.
[16] 李俊,王仲智.长三角城市群网络结构及邻近性机理:基于快递业联系的视角[J].地域研究与开发,2021,40(5):58-63.
[17] 王姣娥,杜方叶,景悦,等.东北地区城际专利转移的空间:行业路径与影响因素[J].资源科学,2022,44(2):365-374.
[18] 王庆喜,胡志学.多维邻近下浙江城市创新网络演化及其机制研究[J].地理科学,2021,41(8):1380-1388.
[19] 赵芮,丁志伟.基于流空间视角的中原城市群物流网络结构及其影响因素分析[J].地域研究与开发,2022,41(4):71-77.
[20] 盛科荣,王丽萍,孙威.网络权力、知识溢出对中国城市绿色经济效率的影响[J].资源科学,2021,43(8):1509-1521.
[21] 宓泽锋,朱菲菲,曾刚.海岛地区海洋产业发展的合作创新网络演化:以舟山市定海区为例[J].科技管理研究,2017,37(7):130-135.
[22] 李博,田闯,史钊源.环渤海地区海洋经济增长质量时空分异与类型划分[J].资源科学,2017,39(11):2052-2061.
[23] 李颖,马双,富宁宁,等.中国沿海地区海洋产业合作创新网络特征及其邻近性[J].经济地理,2021,41(2):129-138.
[24] 王劲峰,徐成东.地理探测器:原理与展望[J].地理学报,2017,72(1):116-134.
[25] POUDER R,JOHN C H ST.Hot Spots and Blind Spots:Geographical Clusters of Firms and Innovation[J].The Academy of Management Review,1997,21(4):1192-1225.
[26] JAFFE A B.Technological Opportunity and Spillovers of R&D:Evidence from Firms’ Patents,Profits,and Market Value[J].American Economic Review,1986,76(5):984-1001.
[27] 张翼鸥,谷人旭,马双.中国城市间技术转移的空间特征与邻近性机理[J].地理科学进展,2019,38(3):370-382.
[28] 刘晓燕,李金鹏,单晓红,等.多维邻近性对集成电路产业专利技术交易的影响[J].科学学研究,2020,38(5):834-842.
[29] 刘承良,桂钦昌,段德忠,等.全球科研论文合作网络的结构异质性及其邻近性机理[J].地理学报,2017,72(4):737-752.
[30] 郭建科,郭姝,秦娅风,等.中非集装箱航运网络演化及其对经贸联系的支撑能力[J].资源科学,2020,42(11):2145-2157.
PDF(1589 KB)

22

Accesses

0

Citation

Detail

Sections
Recommended

/